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ABSTRACT 
Scalar (density) and tensor (gravity-wave) perturbations provide the basis 
for the fundamental observable consequences of inflation, including CBR 
anisotropy and the fluctuations that seed structure formation. These per- 
turbations are nearly scale invariant (Harrison-Zel’dovich spectrum), though 
slight deviation from scale invariance (“tilt”) can -have significant conse- 
quences for both CBR anisotropy and structure formation. In particular, a 
slightly tilted spectrum of scalar perturbations may improve the agreement of 
the cold dark matter scenario with the present observational data. The am- 
plitude and spectrum of the scalar and tensor perturbations depend upon the 
shape of the inflationary potential in the small interval where the scalar field 
responsible for inflation was between about 46 and 54 e-folds before the end 
of inflation. By expanding the inflationary potential in a Taylor series in this 
interval we show that the amplitude of the perturbaiions and the power-law 
slope of their spectra can be expressed in terms of the value of’the poten- 
tial SO e-folds before the end of inflation. V 50. the steepness of the potential, 
zse E mpiV$lV& and the rate of change of the steepness, s& (prime denotes 
derivative with respect to the scalar field). I n addition, the power-law index 
of the cosmic-scale factor at this time, ~50 s [din R/d In f150 z 16x/&. (For- 
mally, our results for the perturbation amplitudes a~nd spectral indices are 

4b 0 orated by Universities Research Association Inc. under contract with the United Slates Department of Energy 



accurate to lowest order in the deviation from scale invariance.) In general, 
the deviation from scale invariance is such to enhance fluctuations on large 
scales. and is only significant for steep potentials, large ~50, or potentials with 
rapidly changing steepness, large z;e. In the latter case, only the spectrum 
of scalar perturbations is significantly tilted. Steep potentials are character- 
ized by large tensor-mode contribution to. the quadrupole CBR temperature 
anisotropy, similar tilt in both scalar and tensor perturbations. and slower 
expansion rate, i.e.. smaller ~~0. Measurements of the amplitude and tilt of 
the scalar and tensor perturbations over determine I’sc,, zse, and z;s, and 
can in principle be used to infer these quantities as well as testing the in- 
flationary hypot,hesis. Our formalism has its limitations; it is not applicable 
to potentials with unusual features in the region that affects astrophysical 
scales. 



1 Introduction 

In inflationary Universe models [l, 21 scalar (density) and tensor (gravity- 
wave) metric perturbations arise due to de Sitter-space produced quantum 
fluctuations. The production of both density perturbations [3] and gravity- 
wave perturbations [J] have been well studied and are by now well under- 
stood. Very roughly. the quantum fluctuations on a given length scale become 
classical metric perturbations when that scale (Fourier mode) crosses outside 
the Hubble radius during inflation. that is, when Xphyr = RX h H-‘. Here 
R is the cosmic-scale factor. X is the comoving wavelength of the Fourier 
mode, and H is the Hubble parameter. The scales of astrophysical in- 
terest, say from galaxy-size perturbations of 1 Mpc to the present Hubble 
scale of lo* Mpc. cross outside the Hubble radius about 50 or so e-foldings 
in the sc&facior before the end of inflation, over an a span of about 
ln(104) 5 S e-folds. In the post-inflationary Universe scalar-mode pertur- 
bations re-enter the Hubble radius with an amplitude that is approximately 
scale invariant: (6P/P)non m [V3’2/V’mp13]XM;:, losj << 1; 0,s = 0 corre- 
sponds to the Harrison-Zel’dovich scale-invariant spectrum [5]. Likewise, the 
tensor-mode perturbations re-enter the Hubble radius with a dimensionless 
amplitude (gravitational-wave strain) that is approximately scale invariant: 
h GW - [v”21mP121XM;:T 10~1 < 1. Here V(6) is the inflationary potential, 
mpr = 1.22 x 10”GeV is the Planck mass, and AMpc = X/ Mpc. The power- 
law indices OS and or are related to the.those frequently used to characterize 
the power spectra of the perturbations: n = 1 - 2aS and no = -207. 

The scalar perturbations provide the primeval density fluctuations that 
seed structure formation in cold dark matter scenarios. and so their ampli- 
tude and spectrum are of crucial importance. Both scalar- and tensor-mode 
perturbations can lead to temperature fluctua.tions in the cosmic background 
radiation (CBR). as briefly summarized in the Appendix. On angular scales 
much larger than a degree. the scale subtended by the Hubble radius at 
decoupling. the sca~lar and tensor contributions are inseparable: on smaller 
angular scales the contribution of the tensor-mode perturbations becomes 
subdominant and the angular dependence of CBR anisotropy can in princi- 



ple be used to separate the scalar and tensor contributions. The detection of 
anisotropy in the CBR on angular scales greater than about 10” by the DMR 
instrument on COBE [6] spurred interest as to the mix of scalar and tensor 
contribution to large-angle CBR anisotropy [7], and what can be learned 
about inflationary models [S]. The purpose of this paper is to relate the am- 
plitude and spectrum of the scalar and tensor perturbations to the shape of 
the inflationary potential. Some of the issues, e.g.> deviations from scale in- 
variance [9] and the relative contributions of scalar and tensor perturbations 
to the quadrupole anisotropy [8], have been addressed elsewhere; in addition 
to extending previous work in several important regards, we have attempted 
to concisely and clearly relatespecific properties of the inflationary potential 
to the potentially measurable features of the metric perturbations [lo]. 

In the next Section we briefly review slow-rollover inflation and the pro- 
duction of metric perturbations: since all the observable effects of these per- 
turbations involve the shape of the potential over an interval of only about 8 
e-folds around 50 e-folds before the end of inflation, we expand the potential 
about this point in terms of its value. I so, its steepness, zse = [n~prV’/V]~~. 
and the change in its steepness. r:o (p rime denotes derivation with respect 
to the scalar field). We show that the amplitude and scale dependence of 
scalar and tensor perturbations, quantified as os and or, are simply related 
to these quantities. and further that the rate of growth of the cosmic-scale 
factor around 50 e-folds before the end of inflation is related to the steep- 
ness of the potential. In Section III we apply our formalism to four different 
types of inflationary potentials, and draw some general conclusions. The 
deviations from scale invariance tend to enhance large-scale perturbations. 
The models that have significant deviation from scale invariance involve ei- 
ther steep potentials or potentials with rapidly changing steepness. In the 
latter case. only the scalar perturbations are tilted significantly. In the case 
of steep potentials. the scalar and tensor perturbations are tilted by a similar 
amount. The relative contributions of the scalar and bensor perturbations to 
the qua~drupole CBR anisotropy is related to steepness of the potential (and 
hence the deviation from scale invariance): Large tensor contribution implies 
significant deviation from scale invariance. and slower expansion rate during 



inflation. In Section IV we finish with some concluding remarks. 

2 Inflationary Perturbations 

All viable models of inflation are of the slow-rollover variety, or can be re- 
cast as such [Z. 111. In slow-rollcver inflation a scalar field that is initially 
displaced from the minimum of its potential rolls slowly to that minimum. 
and as it does the cosmic-scale factor grows very rapidly; the Universe is 
said to inflate. Once the scalar field reaches the minimum of the potential 
it oscillates a.bout it. so tha.t the large potential energy has been converted 
into coherent scalar-field oscillations, corresponding to a condensate of non- 
relativistic scalar particles. The eventual decay of these particles into lighter 
particle states and their subsequent thermalization lead to the reheating of 
the Universe to a temperature T nn cz s, where r is the decay width of 
the scalar particle [l’L. 1 I]. Q uantum fluctuations in the scalar field driving 
inflation lead to scalar metric perturbations (referred to density or curvature 
perturbations) (31, while quantum fluctuations in the metric itself lead to 
tensor metric perturbations (gravity waves) [4]; isocurvature perturbations 
can arise due to quantum fluctuations in other massless fields, e.g.. the axion 
field. if it exists [IX]. 

We assume that the scalzu field driving inflation is minimally coupled so 
that its stress-energy tensor takes the canonical, form. 

T,, = ~,t#&o - Lgpy:- (1) 

where the Lagrangian density of the scalar field L G ~8,dPd - V(d). If we 
make the usual assumption that the scalar field o is spatially homogeneous. or 
at least so over a Hubble radius. the stress-energy-tensor takes the perfect- 
fluid form with energy density, p = io’ + I’(o). and isotropic pressure. 
p = i$’ - I;‘(o). The classical equations of motion for 6 can be obtained 
from the first law of thermodynamics. d(R3p) = -pdRa. or by taking the 
four-divergence of T”“: 

0 + 3Ho + l,.“(d) = 0: (2) 
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the I$ term responsible for reheating has been omitted since we shall only 
be interested in the slow-rollover phase. In addition, there is the Friedmann 
equation, which governs the expansion of the Universe, 

H2 = 8K j&--g (V(b) + ;j2> = 8;;Jl;): (3) 

where we assume that the contribution of all other forms of energy density. 
e.g., radiation and kinetic energy of the scalar field. and the curvature term 
(k/R*) are negligible. The justification for discussing inflation in the context 
of a flat FRW model with a homogeneous scalar field driving inflation are 
discussed at length in Ref. 121; including the C$ kinetic term increases the 
righthand side of Eq. (3) by a. factor of (1 + z2/48x). a small correction for 
viable models. 

Later in this Section and in the Appendix we will be more precise about 
the amplitude of density perturbations and gravitational waves; for now it 
will suffice‘to give the characteristic amplitude of each: 

where (6P/P)non,:$ is the amplitude of the density perturbation on the scale 
X when it crosses~the Hubble radius during the post-inflation epoch, hHOR,., 
is the dimensionless amplitude of the gravitational wave perturbation on the 
scale X when it crosses the Hubble radius, and cs. cr are numerical constants 
of order unity. SFbscript I indicates that the quantity involving the scalar 
potential is to be evaluated when the scale in question crossed outside the 
horizon during the inflationary era. 

[Two small points: in Eq. (1) we got ahead of ourselves and used the 
slow-roll approximation (see below) t,o rewrite the fundamental expression. 

(bb’/P)HOR::\ ‘2 (l’/W?d)l [3]. in terms of the potential only. K’hile we 
shall always mean “cross outside” or “inside the Hubble radius.” we will 
occasionally slip and say. “cross outside” or ‘inside the horizon“ instead.] 

5 



Eqs. (2-5) are the fundamental equations that govern inflation and the 
production of metric perturbations. It proves very useful to recast these 
equations using the scalar field as the independent variable; we then express 
the scalar and tensor perturbations in terms of the value of the potential, its 
steepness, and the rate of change of its steepness when the interesting scales 
crossed outside the Hubble radius during inflation, about 50 e-folds in scale 
factor before the end of inflation, defined by 

v,o = V(d50); 150 _ ~PlV’(hd. ft mPlv”(450) -~Pl[V’(rn,,)]’ 

~‘(450) ’ 
50 = 

V(4.50) V2(450) 

And as we shall discuss, we will work to lowest order in the deviations from 
scale invariance, as and or, which corresponds to order &, mpi~~,. Terms 
involving higher-order derivatives of the potential lead to corrections that are 
higher-order in the deviation from scale invariance. 

To evaluate these three quantities 50 e-folds before-the end of inflation we 
must find the value of the scalar field at this time. During the inflationary 
phase the 4 term is negligible (the motion of 4 is friction dominated), and 
Eq. (2) becomes . 

m u -V’(d); 
3H 

this is known as the slow-roll approximation [9]. (The corrections to the 
slow-roll approximation are 6(a;) for the amplitude of perturbations, and 
O(I$) for the power-law indices themselves. There are models where the 
slow-roll approximation cannot be used at all: e.g., a potential where during 
the crucial 8 e-folds the scalar field rolls uphill. “powered” by the velocity it 
had when it hit the incline.) 

The conditions that must be satisfied in order that d-be negligible are: 

IV”/ < 9HZ z .L17il~v/mp,z; (7) 
11.1 G JVn,p,/V] < 6. (8) 

The end of the slow roll occurs when either or both of these inequalities are 
saturated. at a value of o denoted b!- o,,~. Since H 5 R/R. or Hdt = d In R. 
it follows tliat 

SK I..‘( o)do 
d In R = - 

Sirdo 
mp,2- - I.~“( 0) = 

-- 
nlPl r 

(9) 
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Now express the cosmic-scale factor in terms of is value at the end of inflation, 
&“d, and the number of e-foldings before the end of inflation; N(t+). 

R = exp[-,V(0)] Rend. 

The quantit? N(o) is a time-like variable whose value at the end of inflation 
is zero and whose evolution is governed by 

dN 8x 
T=m,,s. (10) 

Using Eq. (10) we can compute the value of the scalar held 50 e-folds before 
the end of inflation (E &,,a); the values of L’s,, rso, and z&, follow directly. 

As 4 rolls down its potential during inflation its energy density decreases, 
and so the growth in the scale factor is not exponential. By using the fact 
that the stress-energy of the scalar field takes the perfect-&rid form, we can 
solve for evolution of the cosmic-scale factor. Recall, for the equation of state 
p = yp, the scale factor grows as R cc t’, where p = 2/3(1 + y). Here, 

‘p-v 
Y=3 

x2 - 48~ 
$2 + I/ = tZ + 48~’ 

Since the steepness of the potential can change during inqation. y is not in 
general constant; the power-law index p is more precisely the logarithmic rate 
of the change of the logarithm of the scale factor. Q = d In d/din t. 

When the steepness parameter is small, corresponding to a very flat po- 
tential, y is close to -1 and the scale factor grows as a vety large power 
of time. To solve the horizon problem the expansion must be “superlumi- 
nal” (R > 0), corresponding to Q > 1, which requires that zz < 24s. Since 
! ” V = r*/48a, this implies that :$/l’(d) < 1. justifying neglect of the *d I 
scalar-field kinetic energy in computing the expansion rate for all but the 
steepest potentials. (In fact there are much stronger constraints; the COBE 
I)XIR da,ta imply that n 2 0.5. which restricts .r& 5 477. ib/L. 5 h, and 

924.1 
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Next, let us relate the size of a given scale to when that scale crosses 
outside the Hubble radius during inflation. specified by N,(X), the number 
of e-folds before the end of inflation. The physical size of a perturbation is 
related to its comoving size, XPhyS = RX; with the usual convention, I&,,,+ = 
1. the comoving size is the physical size today.- When the scale X crosses 
outside the Hubble radius R,X = H;‘. We then assume that: (1) at the end 
of inflation the energy density is M4 z v(&d); (2) inflation is followed by 
a period where the energy density of the Universe is dominated by coherent 
scalar-field oscillations which decrease as Re3; and (3) when value of the 
scale factor is RR” the Universe reheats to a temperature Tnn 2 m and 
expands adiabatically thereafter. The “matching equation” that relates X 
and N,(A) is: 

A= 
a -k”;’ _ R-w RRH kd H;,, 

&H &nd-RI 

Adiabatic expansion since reheating implies Rtoday/&n = T’u/2.73 Ii; and 
the decay of the coherent scalar-field oscillations implies (Rnn/&,d)3 = 
(M/TRH)~. If we define q = ln(~d/R,)/ln(t,d/tl), the mean power-law 
index, it follows that (&d/Rt)H;r = exp[Nr(q - l)/q]He;i, and Eq. (13) 
becomes 

.4(X) = -& [46 + In XhlPC + i ln(M/1014 GeV) + 5 ln(&/10’4 GeV)] ; 

(14) 

In the case of perfect reheating, which probably only applies to first-order 
inflation Tnu rr. M. 

The scales of astrophysical interest today range roughly from that of 
galaxy size. X m hlpc. to the present Hubble scale. H;’ -- lo4 .\lpc; up to 
the logarithmic corrections these scales crossed outside the horizon between 

about iYr(X) w IS and n‘,(A) z 56 e-folds before the end of inflation. That 
is. the intemnl of irljafion thai deternines its all obserrable consequences 
corers only about 8 e-,folds. 

Except in the case of strict power-law inflation Q varres during inflation: 
this means that the (R.,d/f?r)H,-r factor in Eq. (113) cannot be written 
in closed form. Taking account of this, the matching equation becomes a 

Y 



differential eauation. 
dlnAMpc 

dN, 
= dN1) - 1; 

n(N) 
subject to the “boundary condition:” In X r..rpc = -48 - $ ln(M/10t4 GeV) + 
$ln(Tnu/lO“‘GeV) for ‘VI-= 0, the matching relation for the mode that 
crossed outside the Hubble radius at the end of inflation. Equation (15) 
allows one to obtain the-precise expression for when a given scale crossed 
outside the Hubble radius during inflation. To actually solve this equation, 
one would need to supplement it with the expressions dN/d4 = 8rr/mp,r 
and q = 16r;/z*. For our purposes we need only know: (1) The scales of 
astrophysical interest correspond to N, w “50 + 4,” where for definiteness we 
will throughout take this to be an equality sign. (2) The expansion of Eq. 
(15) about Nr = 50. 

which, with the aid of Eq. (lo), implies that 

We are now ready to express the perturbations in terms of V,,. rsa, and 
r’&. First, we must solve for the value of 6, 50 e-folds before the end of 
inflation. To do so we use l?q. (10). 

dn 
N(d,,) = 50 = - 

I 

mso I?,&, 

mP? 4n.3 
1”‘ 

Next. with the help of Eq. (17) we expand the potential 1:’ and its steepness 
I about &a: 

1.’ 2 I.;, + C;l,(o - oso) =-.r;o 1 + 2s [ s7 (5) A1nAMpc]: (lg) 

r2rjo+r,/o-O~“)=.r.~a[I+~ (s) AhAMpc]; (20) 
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of course these expansions only make sense for potentials that are smooth. 
We note that additional terms in either expansion are O(af) and beyond the 
accuracy we are seeking. 

Now recall the equations for the amplitude of the scalar and tensor per- 
turbations. 

(21) 

(72) 

where subscript 1 means that the quantities are to be evaluated where the 
scale X crossed outside the Hubble radius, N,(X) e-folds before the end of 
inflation. The origin of any deviation from scale invariance is clear: For 
tensor perturbations it arises due to the’variation of the potential; and for 
scalar perturbations it arises due to the variation of both the potential and 
its steepness. 

Using Eqs. (16-Z) it is now simple to calculate the power-law exponents 
as and.ar that quantify the deviations from scale invariance, 

-Qsoz 2 
(IT = &J zso. 

16~ oso - 1 16~ (33) 

0s = @j-- 
-43 ssp 5 &I mPl& - - -. 

8% 
950 

- 1 167~ 877 ’ (24) 

where 

-16x 161; 
950 = ‘+ 3. TZT?: 

50 150 
(25) 

(‘3) 

(6F’/P)HOR..\ = cS (27) 

The spectral indices a, are defined as. CL s = [dln(6p/p)HoR..Jd~n XM& 
and OT = [dl~~~~H~R.\/dlnXh~~~-]~~. and~in general vary slowly with scale. 
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Kate too that the deviations from scale invariance, quantified by as and oT, 
are of the order of &,, mp&,. In the expressions above we retained only 
lowest-order terms in O(oi). The next-order contributions to the spectral 
indices are O(o~); those to the amplitudes are O(o;) and are given in the 
Appendix. The justification for truncating the expansion at lowest order is 
that the deviations from scale invariance are expected to be small. 

As we discuss in more detail in the Appendix, our more intuitive power- 
law indices ~5, or are related to the indices that are usually used to describe 
the power spectra of scalar and tensor perturbations, Ps(k) = /6b(’ = Ak” 
and i+(k) = lhk12 = .q~k”‘, 

n = 1-20s=1-~+r!+; (28) 

&I 1l.T = -20~ = __, 
8% (29) 

(30) 

Finally, let us be more specific about the amplitude of the scalar and 
tensor perturbations; in particular, for small as, or the contributions of 
each to the quadrupole CBR temperature anisotropy: 

32~ V,, - 
= 45 mp,~Z~; 

V 
z 0.6150. 

mp,4 ’ 

T = (AT/T&-T ~ 0.28r~ : 
s - CAT/G)&, 

50 

(31) 

(32) 

(33) 

where expressions have been evaluated to lowest order in & and mptYs,, 
These quantities represent the ensemble averages of the scalar and tensor 
contributions to the quadrupole temperature anisotropy, which in terms of 
the spherical-harmonic expansion of the CBR temperature anisotropy on the 
sky are given by 5( /az,IZ)/4r’. Further. the scalar and tensor contributions 
to the measured quadrupole anisotropy add in quadrature, and are subject 
to “cosmic variance.“ (C osmic variance refers to the dispersion in the values 
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measured by different observers in the Universe.) We refer the reader to the 
Appendix for more details. 

Before going on to specific models, let us make some general remarks. The 
steepness parameter &, must be less than about 24rr to ensure superluminal 
expansion. For “steep” potentials, the expansion rate is “slov~,” i.e., qso closer 
to unity, the gravity-wave contribution to the quadrupole CBR temperature 
anisotropy becomes comparable to. or greater than, that of density perturba- 
tions, and both scalar and tensor perturbations exhibit significant deviations 
from scale invariance. For “flat” potentials, i.e:, small rsc,, the expansion rate 
is “fast,” i.e., ~5s > 1. the gravity-wave contribution to the quadrupole CBR 
temperature anisotropy is much smaller than that of density perturbations, 
and the tensor perturbations are scale invariant. Unless the steepness of the 
potential changes rapidly, i.e., large .r&, the scalar perturbations are also 
scale invariant. 

3 Worked Examples 

In this Section we apply the formalism developed in the previous Section to 
four specific models. So that we can. where appropriate, solve numerically for 
model parameters, we will: (1) Assume that the astrophysically interesting 
scales crossed outside the horizon 50 e-folds before the end of inflation; and 
(2) Use the COBE DMR.quadrupole measurement, ((.ilT)&s)“2 z 16~h: 
[S]. to normalize the scalar perturbations: using Eq. (31) this implies 

v, z 1.6 x 10-r’ n~p,~ r;,. i34) 

\\P remind the reader that it is entirely possible that a significant portion 
of the quadrupole anisotropy is due to tensor-mode perturbations. li is. 
of course. straightforward to change “50” to the number appropriate to a 
specific model, or to normalize the perturbations~ another way. 
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3.1 Exponential potentials 

There are a class of models that can be described in terms of an exponential 
potential. 

I,‘( 0) = & exp( -dd/mpi). (35) 

This type of potential was first invoked in the context of power-law inflation 
[14], and has recently received renewed interest in the context of extended 
inflation 1151. In the simplest model of extended, or first-order, inflation. 
that based upon the Brans-Dicke-Jordan theory of gravity [16], B is related 
to the Bran+Dicke parameter: 3’ = 64n/(2w + 3). 

For such a potential the slow-roll conditions are satisfied provided that 
pz s 24x; thus inflation does not end until the potential changes shape, or 
in the case of extended inflation. until the phase transition takes place. In 
either case we can relate f& to bend, 

* ‘&SC, = @end - 5op/8X. (3’4 

Since dend is in effect arbitrary. the overall normalization of. the potential is 
irrelevant. The two other parameters, rSo and .r&,. are easy to compute: 

.rgJ = -8; & = 0. 

Using the COBE DMR normalization. we can relate Li,, and 8: 

(37) 

VI, = 1.6 x lo-” rr~~,~@*. (38) 

Further. we can comput,e q. QS. or. and T/S: 

q = 167r/,ti? T/S = 0283': aT = as = l/(q - 1) z $‘/16x. (39) 

Kate, for the exponential potential. q. or = OS are independent of epoch. In 
the case of extended inflation. ~5 = or = 4/(2w + 3): since w must be less 
than about 20 [IT]. this implies significant tilt: oS = or 2 0.1. 

13 



3.2 Chaotic inflation 

These models are based upon a very simple potential: 

V(4) = aqib; (40) 

b = 4 corresponds to Linde’s original model of chaotic inflation and o is 
dimensionless [lg]. and b = 2 is a model based upon a massive scalar field 
and m2 = 2a [19]. In these models ~5 is initially displaced from 4 = 0,~and 
inflation occurs as o slowly rolls to the origin. The value of ‘$cnd is easny 
found: &,d = b(b - l)mpl’/24jr. and 

*so Vdb 
N(h) = 50 = S/,“, v’; (41) 

* &J/~P,~ = 50b/4r + b2/48n z 50b/4rr; (42) 

the value of ~#~so is a few times the Planck mass. 
For purposes of illustration consider b = 4; &,d F rnp,/e z 0.4mp1, 

C#I~ u 4mpt, 4,s 2 3.S-lmpt, and &, N 4.16mpt. In order to have sufficient 
inflation the initial value of d must exceed about 4.2mpt; inflation.ends when 
.$ % 0.4mpt; and the scales of astrophysical interest cross outside the horizon 
over an interval AI$ 2~ 0.3mpr. 

The values of the potential, its steepness. and the change in steepness are 
easily found, 

vs’so = a mpr* 
-4% 

nlp,r;o = -. 
50 ’ (43) 

qso = 200/b; T/S = 0.07b: oT 21 bl‘ZO0: 0)s = 07 + 0.01. (44) 

Unless b is very large. scalar perturbations dominate tensor perturbations 
[20]. or, o.s are very small. and q is very large. Further, when or. as 
become significant. they are equal. Using the COBE DhlR normalization we 
find: 

a = 1.6 x 10-“b’-b’2(4~/50)b’*+’ TIL~,~-~, (45) 

For the two special cases of interest: b = 4. a = 6.1 x 10-14; and b = 2. 
m2 E ‘a = 2.0 x lo-% P?. 

14 



3.3 New inflation 

These models entail a very flat potential where the scalar field rolls from 
6 z 0 to the minimum of the potential at q% = o. The original models 
of slow-rollover inflation [21] were based upon potentials of the Coleman- 
Weinberg form 

l.(o) = Ba4/2 + I344 [Irr(#/a’) - h] ; 

where B is a very small dimensionless coupling constant. Other very flat 
potentials also work (e.g.. 1,’ = Vo - aqS4 + iij@ [9]). As before we first solve 
for I&: 

3 

N(&,) = 50 zz 2.E 
/ 

*so Vdp 
* & = 

lru4 _. 
mp? O.“d V’ ’ 1001~4&/u*)lmp? 

; (47) 

where the precise value of &,d is not relevant, only the fact that it is much 
larger than &.o. Provided that o 5 m PI. both Qso and &,d are much less 
than rr; we then find 

V,, 2 Ba’J2; -dfi aal; (48) 

rnplx& 5 -24x/100: qso ~ 2.5 X 10’1 In(o~,/02)) 
lr2 

0s 2 -L < 1: or = 0s + 0.03; 
T 6 x 1O-4 

Qso S z lln(q&/a*)I 
Provided that cr 2 mpt. rso is very small. implying that q is very large, the 
gravitational-wave and density perturbations are very nearly scale invariant. 
and- T/S is small. Finally. using the COBE DhlR normalization. we can 
determine the dimensionless coupling constant B: 

B 2 6 x IO-“/1 In(&Ja2)1 5 3 x lo-“. (.51) 
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3.4 Natural inflation 

This model is based upon a potential of the form [22] 

V(4) = A4 [I + c44lf)l. (52) 

The flatness of the potential (and requisite small couplings) arise because the 
m particle is a pseudo-Nambu-Goldstone boson (f is the scale of spontaneous 
symmetry breaking and A is the scale of explicit symmetry breaking; in the 
limit that A + 0 the Q particle is a massless Nambu-Goldstone boson). It is 
a simple matter to show that C&J is of the order of rrf. 

This potential is difficult to analyze in general; however, there are two 
limiting regimes: (i) f >> mpr; and (ii) f 5 mpt [9]. In the first regime, the 
50 or so relevant e-folds take place close to the minimum of the potential, 
o = of, and inflation can be analyzed by expanding the potential’about 

4 = fJ, 
V(Q) z nAp/2; (53) 

m= = A’/f=; +=4-o. (54) 

In this regime natural inflation is equivalent to chaotic inflation with m* = 
A’/f’ z 2 x lo-i*mp,s. 

In the second regime, f s mpr, inflation takes place when 4 5 rrf, so that 
we can make the following approximations: V 2 2,14 and V’ = -A’d/f2.. 
Taking &,d * nf, we can solve for N(d): 

N(4) = -E/r’ $ 2 16yy2 ln(%f/@); 
mPl* 4 

from which it is clear that achieving 50 e-folds of inflation places a lower 
bound to f, very roughly f 2 mpr/3 [9. 221. 

Now we can solve for a+,o, V,,,, IS,,~ and .r;O: 

d,,/lrf z exp(-50mpr2/16xf2) 5 O(O.1): L&l 2 2,4’: (56) 

’ I)lpl 050 < qo.1): .,,jf fh 
1 mp,\? 

.r;, ? -: 
( -7) 

(.57) 
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.l/mp, = 6.7 x IO+ exp(-25mpt2/16af2). 

Further, we can solve for T/S, crT1 and os: 

(563 

(6’3) 

(61) 

qm=64+--)*(&)*>I. (6‘4 

Using the COBE DMR normalization, we can relate A to f/mpt: 

Regime (ii) provides the exception to the rule that as % a~ and large ~1s 
implies large T/S. For example, taking f = mpr/2, we find: 

&o/f - 0.06; x5o - 0.06; & = -2: Qso - IO’; (63) 

OT - 10-4; CIS - 0.08; T/S 5 10-3. (64) 

The gravitational-wave perturbations are very nearly scale invariant, while 
the density perturbations deviate significantly from scale invariance. We 
note that this regime (ii), i.e., f 5 mpt, occupies only a tiny fraction of 
parameter space because f must’be greater than about mpt/3 to achieve 
sufficient inflation: further. regime (ii) is “fine tuned” and “unnatural” in 
the sense that the required value of A is exponentially sensitive to the value 

of f/w. 
Finally. we note that the results for regime (ii) apply to any inflation- 

.ary model whose Taylor expansion in the inflationary region is similar; e.g.. 
V(m) = -m202 + X0”. which was originally analyzed in Ref. 191. 
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4 Concluding Remarks 

Beyond the generic prediction of a flat Universe and its important conse- 
quences for the matter content of the Universe, namely that most of the 
matter in the Universe is nonbaryonic [23], the observable consequences of 
inflation are tied to density and gravity-wave perturbations. (In models of 
first-order inflation vacuum-bubble collisions provide a very potent source of 
short-wavelength gravity waves 1241.) The amplitude and spectrum of these 
perturbations depend upon the shape of the inflationary potential in the nar- 
row interval where the scalar field was around “50 +z 4” e-folds before the end 
of inflation. By expanding the potential about this interval in terms of its 
value, b’s,, its steepness, ~50 = [mplV’/V]5~, and the rate of change of its 
steepness, z&, we have expressed the amplitudes and power-law indices of 
the scalar and tensor metric perturbations in terms of these three quantities 
to lowest order in the deviations from scale invariance. Measurements of the 
amplitudes and spectral indices of the density and gravity-wave perturbations 
determine-in fact over determine-L&,, I so, and I&, and, in principle, such 
measurements allow one to both infer the shape of the inflationary potential 
and to test the consistency of the inflationary hypothesis [25]. 

There are limitations to our formalism; it is not applicable to potentials 
that are not “smooth” or have inclines in the region that affects astrophysi- 
tally interesting scales. This includes potentials with “specially engineered” 
bumps and wiggles [26]. ; 

To summarize the general feqtures of our results. In all examples the 
deviations from scale invariance enhance perturbations on large scales. The 
only potentials that have significant deviations from scale invariance are very 
steep or have rapidly changing steepness. In the former case, both the scalar 
and tensor perturbations are tilted- by a similar amount: in the latter case. 
only the scalar perturbations are tilted, 

For “steep“ potentials. the expansion rate is “slow.” i.e._ qso close to 
unity. the gravity-wave contribution to the CBR quadrupole anisotropy be- 
comes comparable to. or greater th~an. that, of density perturbations. and both 
scalar and tensor perturbations are tilted significantly. For flat potentials. 
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i.e., small zse, the expansion rate is “fast,” i.e.. q,, >> 1, the gravity-wave 
contribution to the CBR quadrupole is much smaller than that of density 
perturbations. and unless the steepness of the potential changes significantly. 
large &. both spectra very nearly scale invariant; if the steepness of the po- 
*,ential changes rapidly. the spectrum of scalar perturbations can be tilted 
significant,ly. The models that permit significant deviations from scale in- 
variance involve exponential or cosine potentials. The former by virtue of 
their steepness, the latter by virtue of the rapid variation of their steepness. 

Only recently has the deviation of the metric perturbations from the 
scale-invariant Harrison-Zel’dovich form drawn intense scrutiny, though their 
deviation from scale invariance has been noted since the very beginning [3,9]. 
This new interest traces in part to the growing body of observational data 
that are putting the cold dark matter scenario to the test: The COBE DMR 
result, together with a host of other observations. may be inconsistent with 
the simplest version of cold dark matter, that with scale-invariant density 
perturbations (as = 0). (Then again, the problems may disappear.) A 
slight deviation from scale invariance or tilt, as z 0.08 or n % 0.84, seems to 
improve concordance with the observational data by reducing~ the amplitude 
of scalar perturbations on small scales [27]. Of the models analyzed here, 
only two permit significant tilt, those baaed on exponential potentials, which 
include the very attractive extended-inflation models, and natural inflation. 
The former are also characterized by significant tensor contribution to the 
quadrupole anisotropy, while the latter are not; a separation of the tensor 
and scalar contributions could cleanly distinguish between these two types 
of models. And in that regard, measurements of CBR anisotropy on angular 
sca]es of less than a few degrees will play a crucial role. 

I wish to thank James Lidsey. Paul Steinhardt. and Martin White for valuable 
conversations. This work was supported in part by the DOE [at Chicago and 
Fermilab) and by the NASA through XAGW-2351 (at Fermilab). 
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A Appendix 

In Section II we were purposefully vague when discussing the amplitudes of 
the scalar and tensor modes. except when specifying their contributions to 
the quadrupole CBR t,emperature anisotropy; in fact, the spectral indices 
as and oT, together with the scalar and tensor contributions to the CBR 
quadrupole serve to provide all t,he information necessary. In this Appendix 
we fill in more of the details about the metric perturbations. 

The scalar and tensor metric perturbations are expanded in harmonic 
functions, in the flat Universe predicted by inflation, plane waves. 

44x. 1) P = &J d3k 6k(t) e-ik.X; 
(65) 

where siY is the polarization tensor for the gravity-wave modes, and i = +, 
x are the two polarization states. Everything of interest can be computed 
in terms of hi and 6k. For example, the rms mass fluctuation in a sphere 
of radius r is obtained in terms of the window function for a sphere and the 
power spectrum ps( k) E (I&l’) (see below), 

((6M/W2) = $-+ jomMr)12 ps(kVk (67) 

where j,(z) is the spherical Bessel function of first order. If Ps(k) is a 
power law, it follows roughly that (6kf/~V)~ - /?I&)‘, evaluated on the scale 
k = r-r. This is wha.t we meant by (6~/~)non,~: the rms mass fluctuation 
on the scale X when it crossed inside the horizon. Likewise. by hnon,i we 
meant the rms strain on the scale ,4 as it crossed inside the Hubble radius. 

(&OR..\ j2 - qhp. 
In the previous discussions we have chosen to specify the metric pertur- 

bations for the different Fourier modes when they crossed inside the hori- 
zon. rather than at a common time. We did so because scale invariance 
is made manifest. as the scale independence of the metric perturbations at 
post-inflation horizon crossing. Further. in the case of scalar perturbations 
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(b/P) non is up to a numerical factor the fluctuation in the Newtonian po- 
tential, and, by specifying the scalar perturbations at horizon crossing, we 
avoid the discussion of scalar perturbations on superhorizon scales, which is 
beset by the subtleties associated with the gauge noninvariance of 6k. 

It is, however. necessary to specify the perturbations at a common time 
to carry out most calculations; e.g., an N-body simulation of structure for- 
mation or the calculation of CBR anisotropy. To do so, one has to take 
account of the evolution of the perturbations after they enter the horizon. 
After entering the horizon tensor perturbations behave like gravitons, with 
hk decreasing as R-’ and the energy density associated with a~given mode, 
pk b mpr2~$,,,1;3~hkjZ. decreasing as Re4. -The evolution of scalar perturba- 
tions is slightly more complicated; modes that enter the horizon while the 
Universe is still radiation dominated remain essentially constant until the 
Universe becomes matter dominated (growing only logarithmically); modes 
that enter the horizon after the Universe becomes matter dominated grow as 
the‘ scale factor. (The gauge noninvariance of 6, is not an important issue 
for subhorizon size modes; here a Newtonian analysis suffices, and there is 
only one growing mode, corresponding to a density perturbation.) 

The method for characterizing the scalar perturbations is by now stan- 
dard: The spectrum of perturbations is specified at the present epoch (as- 
suming linear growth for all scales); the spectrum at earlier epochs can be 
obtained by multiplying 6, by R(t)/Rroday. First. it should be noted that 6k 
is a gaussian, random variable with statistical expectation 

(6k6q) = &(k)@(k - q): (68) 

where the power spectrum today is written as 

Ps(k) z’,4k”T(k)2: (69) 

tr = 1-20s (= 1 for scale-invariant perturbations). and T(k) is the “transfer 
function” which encodes the information about the post-horizon crossing 
evolution of each mode and depends upon the matter content of the Universe. 
e.g.. baryons plus cold dark matter, hot dark matter. warm dark matter. 
and so on. The transfer function is defined so tha,t T(k) -+ 1 for k + 0 



(long-wavelength perturbations); an analytic approximation to the cold dark 
matter transfer function is given by [28] 

T(k) = 
In( 1 + 2.34q)/2.34q 

[l + (3.899) + (16.lq)* + (5.46q)3 + (6.71q)4]1’4’ 
(W 

where q = k/(flk’ Mpc-i). The overall normalization factor 

where the O(ai) correction to A has been included [30]. The quantity 
nr = -20~ = -&/SK, R - 1 = -2as = no + 1~,,/4a, km is the comoving 
wavenumber of the scale that crossed outside the horizon 50 e-folds before 
the end of inflation. All the formulas below simplify if this scale corresponds 
to the present horizon scale. specifically, km = Ho/2. (Eq. (71) can be sim- 
plified by expanding I(i+s) = T(3/2)[1 +z(2-21n2-r)lq valid for ]z] < 1; 
y N 0.577 is Euler’s constant.] 

From this expression it is simple to compute the Sachs-Wolfe contribution 
of scalar perturbations to the CBR temperature anisotropy; on angular scales 
much greater than about 1” (corresponding to multipoles 1 < 100) it is the 
dominant contribution. If we expand the CBR temperature on the sky in 
spherical harmonics, 

where To = 2.73 h: is the CBR temperature today, then the ensemble expec- 
tation for the multipole coefficients is given by 

([a~,,,[*) = 2 /ocrk-‘p,(k)_j,(kr~)/‘dk: 

~ A Hz+” ,A+’ r(l+ in - ;)r(3 -n) 
16 r(l-- in+ ;)[rp - +)y' 

(i4) 

where rn z 2Hg’ is the comoving distance to the last scattering surface. and 
this expression is for the Sachs-Wolfe contribution from scalar perturb;ztions 
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only. For n not too different from one, the ensemble expectation for the 
quadrupole CBR temperature anisotropy is 

AT ’ ( > - = 5loz,l* 32~ v,o 
TO Q-S - 47r 

=: 45 mp,4 rzo (b-o)*-“. (75) 

(By choosing ksa = ~0’ = iHo, the last factor becomes unity.) 
The procedure for specifying the tensor modes is similar, cf. Refs. j31.321. 

For the modes that enter the horizon after the Universe becomes matter dom- 
inated. k 5 0.1 k* Mpc, which are the only modes that contribute significantly 
to CBR anisotropy on angular scales greater than a degree, 

hi(r) = a’(k) 3j;,“” ; ( ) (76) 

where r = ro(t/to) ‘/s is conformal time. [For the modes that enter the 
horizon during the radiation-dominated era, k 2 0.1 h2 Mpc-t, the.factor 
3j,(kr)/kT is replaced by jo(kr) for the remainder of the radiation era. In 
eit.her case, the factor’ in*olving the spherical Bessel function quantifies the 
fact that tensor perturbations remain constant while outside the horizon, and 
after horizon crossing decrease as R-’ .] 

The tensor perturbations too are characterized by a gaussian, random 
variable, here written as a’(k): the statistical expectation 

(hjh;) = Pr(k)6t3’(k - q)6,,: 

bvbere the power spectrum 

I 1 
2 &(I;) = ATk”T-3 3i;ki) : T (78) 

8 r/,, (1 + &)[r(; - fn7)]2 _ AT = -- 
:3rr mp,4 m[r(;)p 

k50nT: (79) 

where the 0(a;) correction to <aT has been included. Note that nr = -?a~ 
is zero for scale-invariant perturbations. 



Finally, the contribution of tensor perturbations to the multipole ampli- 
tudes. which arise solely due to the Sachs-Wolfe effect 129. 31, 321, is given 
by 

where 

(la,mf) ‘v 36~~ ,r;; _‘;I i= k”‘+l AT IF,(k)l’dk; 

F{(k) = -1; dr 

and rD = re/( 1 + zo)‘/* 5 ru/35 is the comoving distance-to the horizon at 
decoupling (= conformal time at decoupling). Equation (80) is approximate 
in that very short wavelength modes. kr,, > 100. have not been properly 
taken into account; since their contribution is very small, the error made is 
insignificant. (Further, for 12 1000, the finite thickness of the last-scattering 
surface must be taken into account.) 

The tensor contribution to the quadrupole CBR temperature anisotropy 
for nr not too different from zero is 

510z7711Z E - z 0.61--$(ksoro)-nr; 
4n 

where the integrals in the previous expressions have been evaluated numeri- 
cally. 

The scalar and tensor contributions to a given multipole are dominated 
by wavenumbers kr, - 1. For scale-invariant perturbations (n - 1 = nr = 
0) and small 1, both the scalar and tensor contributions to (I + ~)2(]a~m~2) 
are approximately constant. The contribution of scalar perturbations to 

(I + i)‘( lar,,,]‘) begins to decrease for 1 w 1.50 because t.he scalar contribution 
to these multipoles is dominated by modes that entered the horizon before 
matter domination (and hence are suppressed by the transfer function). The 
contribution of tensor modes to (I + i)‘( ]a,,, 1’) begins to decrease for 1 + 30 
because the tensor contribution to these multipoles is dominated by modes 
that entered the horizon before decoupling (and hence decay-ed as R-’ until 
decoupling). All of this is illustrated in Fig. 1, 
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Fig&e 1 The (normalized) contributions of the scalar and tensor perturbations to the 
multipole moments; more precisely, 1(1+1)( Ial,,, ~2)/6(~as,~2) for the scalar contribution and 
[([ t ~)(~oo,,l*)/5(~os,,l’) for the tensor contribution. The curve for tensor contributions 
begins decreasing for 1 y 30. These results were obtained by numerically integrating 
Eqs. (~73. SO) for n - 1 = 71~ = 0. zone = 1000. and the cold dark matter transfer function 
(with’h = i), cf. Eq. (i0). 


